Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts.

نویسندگان

  • Pradip K Mazumder
  • Brian T O'Neill
  • Matthew W Roberts
  • Jonathan Buchanan
  • Ui Jeong Yun
  • Robert C Cooksey
  • Sihem Boudina
  • E Dale Abel
چکیده

Diabetes alters cardiac substrate metabolism. The cardiac phenotype in insulin-resistant states has not been comprehensively characterized. The goal of these studies was to determine whether the hearts of leptin-deficient 8-week-old ob/ob mice were able to modulate cardiac substrate utilization in response to insulin or to changes in fatty acid delivery. Ob/ob mice were insulin resistant and glucose intolerant. Insulin signal transduction and insulin-stimulated glucose uptake were markedly impaired in ob/ob cardiomyocytes. Insulin-stimulated rates of glycolysis and glucose oxidation were 1.5- and 1.8-fold higher in wild-type hearts, respectively, versus ob/ob, and glucose metabolism in ob/ob hearts was unresponsive to insulin. Increasing concentrations of palmitate from 0.4 mmol/l (low) to 1.2 mmol/l (high) led to a decline in glucose oxidation in wild-type hearts, whereas glucose oxidation remained depressed and did not change in ob/ob mouse hearts. In contrast, fatty acid utilization in ob/ob hearts was 1.5- to 2-fold greater in the absence or presence of 1 nmol/l insulin and rose with increasing palmitate concentrations. Moreover, the ability of insulin to reduce palmitate oxidation rates was blunted in the hearts of ob/ob mice. Under low-palmitate and insulin-free conditions, cardiac performance was significantly greater in wild-type hearts. However, in the presence of high palmitate and 1 nmol/l insulin, cardiac performance in ob/ob mouse hearts was relatively preserved, whereas function in wild-type mouse hearts declined substantially. Under all perfusion conditions, myocardial oxygen consumption was higher in ob/ob hearts, ranging from 30% higher in low-palmitate conditions to greater than twofold higher under high-palmitate conditions. These data indicate that although the hearts of glucose-intolerant ob/ob mice are capable of maintaining their function under conditions of increased fatty acid supply and hyperinsulinemia, they are insulin-resistant, metabolically inefficient, and unable to modulate substrate utilization in response to changes in insulin and fatty acid supply.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Leptin Signaling Is Required to Normalize Myocardial Fatty Acid Oxidation Rates in Caloric-Restricted ob/ob Mice

OBJECTIVE ob/ob and db/db mice manifest myocardial hypertrophy, insulin resistance, altered substrate utilization, mitochondrial dysfunction, and lipid accumulation. This study was designed to determine the contribution of central and peripheral leptin signaling to myocardial metabolism and function in ob/ob and db/db mice in the absence of diabetes and morbid obesity. RESEARCH DESIGN AND MET...

متن کامل

Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity.

BACKGROUND Obesity is a risk factor for cardiovascular disease and is strongly associated with insulin resistance and type 2 diabetes. Recent studies in obese humans and animals demonstrated increased myocardial oxygen consumption (MVO2) and reduced cardiac efficiency (CE); however, the underlying mechanisms remain unclear. The present study was performed to determine whether mitochondrial dysf...

متن کامل

Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity.

Hyperglycemia is associated with altered myocardial substrate use, a condition that has been hypothesized to contribute to impaired cardiac performance. The goals of this study were to determine whether changes in cardiac metabolism, gene expression, and function precede or follow the onset of hyperglycemia in two mouse models of obesity, insulin resistance, and diabetes (ob/ob and db/db mice)....

متن کامل

Metabolic responsiveness to insulin in the diabetic heart.

IN RECENT DECADES there has been a gradual reduction in the morbidity attributable to ischemic heart disease as a consequence of smoking cessation, better recognition and treatment of hypertension, and the introduction of effective cholesterollowering drugs. Unfortunately, the rising global prevalence of Type 2 diabetes mellitus threatens to reverse these gains. Diabetes both accelerates the de...

متن کامل

UCP3 Regulates Cardiac Efficiency and Mitochondrial Coupling in High Fat–Fed Mice but Not in Leptin-Deficient Mice

These studies investigate the role of uncoupling protein 3 (UCP3) in cardiac energy metabolism, cardiac O(2) consumption (MVO(2)), cardiac efficiency (CE), and mitochondrial uncoupling in high fat (HF)-fed or leptin-deficient mice. UCP3KO and wild-type (WT) mice were fed normal chow or HF diets for 10 weeks. Substrate utilization rates, MVO(2), CE, and mitochondrial uncoupling were measured in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 53 9  شماره 

صفحات  -

تاریخ انتشار 2004